Category

Archives

Resurrecting a p53 peptide activator - An enabling nanoengineering strategy for peptide therapeutics

Many high-affinity peptide antagonists of MDM2 and MDMX have been reported as activators of the tumor suppressor protein p53 with therapeutic potential. Unfortunately, peptide activators of p53 generally suffer poor proteolytic stability and low membrane permeability, posing a major pharmacological challenge to anticancer peptide drug development. We previously obtained several potent dodecameric peptide antagonists of MDM2 and MDMX termed PMIs, one of which, TSFAEYWALLSP, bound to MDM2 and MDMX at respective affinities of 0.49 and 2.4 nM. Here we report the development of gold nanoparticles (Np) as a membrane-traversing delivery vehicle to carry PMI for anticancer therapy. Np-PMI was substantially more active in vitro than Nutlin-3 in killing tumor cells bearing wild-type p53, and effectively inhibited tumor growth in metastasis in a mouse homograft mode of melanoma and a patient-derived xenograft model of colon cancer with a favorable safety profile. This clinically viable drug delivery strategy can be applied not only to peptide activators of p53 for cancer therapy, but also to peptide therapeutics in general aimed at targeting intracellular protein-protein interactions for disease intervention.

Related Products

Cat.No. Product Name Information
S1061 Nutlin-3 Nutlin-3 is a potent and selective Mdm2 (RING finger-dependent ubiquitin protein ligase for itself and p53) antagonist with IC50 of 90 nM in a cell-free assay; stabilizes p73 in p53-deficient cells.

Related Targets

MDM2/MDMX E3 Ligase