Category

Archives

Anterior-Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling

As known from model organisms, such as frog, fish, mouse, and chicken, the anterior-posterior patterning of the definitive endoderm (DE) into distinct domains is controlled by a variety of signaling interactions between the DE and its surrounding mesoderm. This includes Wnt/FGFs and BMPs in the posterior half and all-trans-retinoic acid, TGF-β-ligands, Wnt-, and BMP-inhibitors in the anterior half of the DE sheet. However, it is currently unclear how these embryonic tissue interactions can be translated into a defined differentiation protocol for human embryonic stem cells. Activin A has been proposed to direct DE into a SOX2-positive foregut-like cell type. Due to the pleiotropic nature of SOX2 in pluripotency and developing cells of the foregut, we purified DE-cells by magnetic cell sorting and tested the effects of anteriorizing and posteriorizing factors on pure endoderm. We show in contrast to previous studies that the generation of the foregut marked by SOX2/FOXA2 double-positive cells does not depend on activin A/TGF-β-signaling but is mediated by the inhibition of Wnt- and BMP-signaling. Retinoic acid can posteriorize and at the same time dorsalize the foregut toward a PDX1-positive pancreatic duodenal cell type whereas active Wnt/beta-catenin signaling synergistically with FGF-2, BMP-4, and RA induces the formation of CDX2-positive posterior endoderm. Thus, these results provide new insights into the mechanisms behind cell specification of human DE derived from pluripotent stem cells. 

Related Products

Cat.No. Product Name Information
S2186 SB505124 SB505124 is a selective inhibitor of TGFβR for ALK4, ALK5 with IC50 of 129 nM and 47 nM in cell-free assays, respectively, also inhibits ALK7, but does not inhibit ALK1, 2, 3, or 6.

Related Targets

TGF-beta/Smad