Category

Archives

UMI-77 primes glioma cells for TRAIL-induced apoptosis by unsequestering Bim and Bak from Mcl-1

Malignant glioma is the most common and aggressive form of brain tumor with poor prognosis of survival. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent but is insufficient of inducing apoptosis in some types of gliomas. In this study, we showed that the small-molecule Mcl-1 inhibitor UMI-77 sensitized glioma cells to TRAIL treatment, as evidenced by cell viability assay, Annexin V staining and JC-1 staining. Combination of UMI-77 and TRAIL in glioma cells led to the activation of caspase-8 and Bid, cleavage of caspase-3 and poly-ADP ribose polymerase (PARP), accumulation of tBid in the mitochondria and release of cytochrome c into the cytosol. UMI-77 alone or in combination with TRAIL untethered pro-apoptotic Bcl-2 proteins Bim and Bak from the sequestration of Mcl-1 and promoted the conformational activation of Bak. Small hairpin RNA (shRNA) of Bid attenuated the cleavage of caspase-8, Bid, caspase-3 and PARP, and reduced the cytotoxicity of UMI-77 plus TRAIL as compared with control shRNA cells, indicating this synergy entails the crosstalk between extrinsic and intrinsic apoptotic signaling. Taken together, UMI-77 enhances TRAIL-induced apoptosis by unsequestering Bim and Bak, which provides a novel therapeutic strategy for the treatment of gliomas.