Category

Archives

TGF-β1 promotes Staphylococcus aureus adhesion to and invasion into bovine mammary fibroblasts via the ERK pathway

Fibroblasts are the structural base of mammary breast tissues. TGF-β1 can regulate the fibrotic process; however, it remains unclear whether TGF-β1 influences the susceptibility of fibroblasts to bacteria. Staphylococcus aureus (S. aureus) is a major bacterium in both chronic and subclinical mastitis in lactating cows that acts by invading host cells. To better understand the function of TGF-β1 in bovine mammary fibroblasts' (BMFBs) susceptibility to bacteria as well as the mechanisms involved, a primary BMFB model was established by treating cells with TGF-β1 followed by infection with S. aureus. The results revealed that the adhesion and invasion of S. aureus into BMFBs was significantly increased after cells were treated with 5 ng/ml TGF-β1 for 12 h. Moreover, TGF-β1 can increase Collagen I and α-SMA expression via activation of ERK signaling. However, the increased adhesion and invasion of S. aureus can be blocked by specific antibodies against either Collagen I or α-SMA, indicating that the increased adhesion and invasion are dependent on TGF-β1-induced upregulation of both Collagen I and α-SMA. Using PD98059, an ERK inhibitor, could also decrease the adhesion and invasion of S. aureus. These results indicate that TGF-β1 could promote S. aureus adhesion to and invasion into BMFBs by increasing Collagen I and α-SMA expression and may provide a novel target for controlling bovine mastitis.

Related Products

Cat.No. Product Name Information
S1177 PD98059 PD98059 is a non-ATP competitive MEK inhibitor with IC50 of 2 μM in a cell-free assay, specifically inhibits MEK-1-mediated activation of MAPK; does not directly inhibit ERK1 or ERK2. PD98059 is a ligand for the aryl hydrocarbon receptor (AHR) and functions as an AHR antagonist.

Related Targets

MEK