Category

Archives

Rifampin and ritonavir increase oral availability and elacridar enhances overall exposure and brain accumulation of the NTRK inhibitor larotrectinib

Introduction: Larotrectinib is an FDA-approved oral small-molecule inhibitor for neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive cancer treatment. Here larotrectinib pharmacokinetic behavior upon co-administration with prototypical inhibitors of the efflux transporters ABCB1/ABCG2 (elacridar), the SLCO1A/1B (OATP1A/1B) uptake transporters (rifampin), and the drug-metabolizing enzyme CYP3A (ritonavir), respectively, was investigated.

Methods: Inhibitors were orally administered prior to oral larotrectinib (10 mg/kg) to relevant genetically modified mouse models. Larotrectinib plasma and tissue homogenate concentrations were measured by a liquid chromatography-tandem mass spectrometric assay.

Results: Elacridar increased oral availability (2.7-fold) and markedly improved brain-to-plasma ratios (5.0-fold) of larotrectinib in wild-type mice. Mouse (m)Oatp1a/1b but not hepatic transgenic human (h)OATP1B1 or -1B3 restricted larotrectinib oral availability and affected its tissue distribution. Rifampin enhanced larotrectinib oral availability not only in wild-type mice (1.9-fold), but surprisingly also in Slco1a/1b-/- mice (1.7-fold). Similarly, ritonavir increased the larotrectinib plasma exposure in both wild-type (1.5-fold) and Cyp3a-/- mice (1.7-fold). Intriguingly, both rifampin and ritonavir decreased liver and/or intestinal larotrectinib levels in all related experimental groups, suggesting additional inhibition of enterohepatic Abcb1a/1b activity.

Conclusions: Elacridar enhances both larotrectinib plasma and tissue exposure and especially relative brain penetration, which might be therapeutically relevant. Hepatic mOatp1a/1b but not hOATP1B1 or -1B3 transported larotrectinib. Additionally, rifampin enhances larotrectinib systemic exposure, most likely by inhibiting mOatp1a/1b, but probably also hepatic and/or intestinal mAbcb1. Similar to rifampin, dual-inhibition functions of ritonavir affecting both CYP3A enzymes and enterohepatic Abcb1 transporters enhanced larotrectinib oral availability. The obtained insights may be used to further optimize the clinical-therapeutic application of larotrectinib.

Related Products

Cat.No. Product Name Information
S7960 Larotrectinib sulfate Larotrectinib sulfate is an oral potent and selective ATP-competitive inhibitor of tropomyosin receptor kinases (TRK). Larotrectinib inhibition of TRKs induces cellular apoptosis and G1 cell-cycle arrest.

Related Targets

Apoptosis related Trk receptor