Category

Archives

Overexpression of UTX promotes tumor progression in Oral tongue squamous cell carcinoma patients receiving surgical resection: a case control study

Background: Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) has been identified as a histone 3 lysine 27 (H3K27) demethylase and acted as a tumor suppressor gene or oncogenic function. The current study was to explore the significance of UTX in oral tongue squamous cell carcinoma (OTSCC) patients who received surgical resection.

Methods: A total of 148 OTSCC patients who underwent surgical resection were identified, including 64 patients (43%) with overexpression of UTX and 84 patients (57%) harboring low expression of UTX. We also used two OTSCC cell lines, SAS and Cal 27, to determine the modulation of cancer. Chi-square test was used to investigate the difference of categorical variables between the groups; survival outcome was analyzed using the Kaplan-Meier method in univariate analysis, and a Cox regression model was performed for multivariate analyses.

Results: Univariate and multivariate analyses showed overexpression of UTX were significantly related to worse disease-free survival (P = 0.028) and overall survival (P = 0.029). The two OTSCC cell lines were treated with GSK-J4, a potent inhibitor of UTX, and transwell migration and invasion assays showed an inhibitory effect with a dose-dependent manner. In addition, western blot analyses also revealed the inhibition of cell cycle and epithelial-mesenchymal transition.

Conclusion: Our study suggests that UTX plays an important role in the process of OTSCC and overexpression of UTX may predict poor prognosis in OTSCC patients who received surgical resection.

Related Products

Cat.No. Product Name Information
S7070 GSK J4 HCl GSK J4 HCl is a cell permeable prodrug of GSK J1, which is the first selective inhibitor of the H3K27 histone demethylase JMJD3 and UTX with IC50 of 60 nM in a cell-free assay and inactive against a panel of demethylases of the JMJ family.

Related Targets

JMJD Histone Demethylase