Category

Archives

Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells

We previously reported that upregulation of mortalin (HSPA9/GRP75), the mitochondrial HSP70 chaperone, facilitates tumor cell proliferation and survival in human medullary thyroid carcinoma (MTC), proposing mortalin as a novel therapeutic target for MTC. In this report, we show that mortalin is also upregulated in other thyroid tumor types, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC), and that mortalin depletion can effectively induce growth arrest and cell death in human PTC (TPC-1), FTC (FTC133), and ATC (8505C and C643) cells in culture. Intriguingly, mortalin depletion induced varied effects on cell cycle arrest (G0/G1 phase arrest in TPC-1 and C643, G2/M phase arrest in 8505C, and mild G2/M phase arrest with increased sub-G0/G1 population in FTC133) and on the levels of TP53, E2F-1, p21CIP1, p27KIP1, and poly (ADP-ribose) polymerase cleavage in these cells, suggesting that thyroid tumor cells respond to mortalin depletion in a cell type-specific manner. In these cells, we also determined the efficacy of triphenyl-phosphonium-carboxy-proxyl (Mito-CP) because this mitochondria-targeted metabolism interfering agent exhibited similar tumor suppressive effects as mortalin depletion in MTC cells. Indeed, Mito-CP also induced robust caspase-dependent apoptosis in PTC and ATC cell lines in vitro, exhibiting IC50 lower than PLX4032 in 8505C cells and IC50 lower than vandetanib and cabozantinib in TPC-1 cells. Intriguingly, Mito-CP-induced cell death was partially rescued by mortalin overexpression, suggesting that Mito-CP may inactivate a mechanism that requires mortalin function. These findings support the significance of mortalin and mitochondrial activity in a broad spectrum of thyroid cancer.

Related Products

Cat.No. Product Name Information
S1267 Vemurafenib (PLX4032) Vemurafenib (PLX4032, RG7204, RO5185426) is a novel and potent inhibitor of B-RafV600E with IC50 of 31 nM in cell-free assay. 10-fold selective for B-RafV600E over wild-type B-Raf in enzymatic assays and the cellular selectivity can exceed 100-fold. Vemurafenib (PLX4032, RG7204) induces autophagy.

Related Targets

Raf