Category

Archives

Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor

BACKGROUND:

To provide support for combined usage of phosphoinositide 3-kinase (PI3K) inhibitors or mitogen-activated protein kinase pathway inhibitors together with sorafenib in treatment of sorafenib-resistant hepatocellular carcinoma.

MATERIALS AND METHODS:

The sorafenib-resistant cell lines were established to evaluate the effects of MK-2206 2HCL, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, and PD0325901, an rat sarcoma (RAS) and/or extracellular signal-regulated kinase (ERK) inhibitor, on cell proliferation and apoptosis, as both single and combined treatments with sorafenib. In addition, multidrug resistance 1 gene expression, mutation status of key members in PI3K/mTOR, and RAS/ERK pathways and pathway activation were analyzed to identify predictors of drug response.

RESULTS:

Molecular studies reveal that combining MK-2206 2HCL or PD0325901 with sorafenib not only has a synergistic effect, in suppressing PI3K/protein kinase B/mTOR and RAS/MEK/ERK signaling more effectively than either treatment alone, but also prevents the cross activation of the other pathway that occurs with single treatments in both sorafenib sensitive and resistant lines. PD0325901 exhibited a stronger synergic effect with sorafenib than MK-2206 2HCL. Sorafenib-resistant cell lines were characterized by activation of both of the two pathways, as indicated by multidrug resistance 1 gene expression profiles and pathway activity analysis.

CONCLUSIONS:

Our studies have showed that both inhibitors of PI3K/mTOR and RAS/ERK signaling are potentially effective antihepatocellular carcinoma drugs especially in treating sorafenib-resistant hepatocellular carcinoma.

Related Products

Cat.No. Product Name Information
S1036 Mirdametinib (PD0325901) Mirdametinib (PD0325901) is a selective and non ATP-competitive MEK inhibitor with IC50 of 0.33 nM in cell-free assays, roughly 500-fold more potent than CI-1040 on phosphorylation of ERK1 and ERK2. Phase 2.

Related Targets

MEK