Category

Archives

Immune mechanisms of resistance to cediranib in ovarian cancer

This paper investigates mechanisms of resistance to the VEGF receptor inhibitor cediranib in high-grade serous ovarian cancer, HGSOC, and defines rational combination therapies. We used three different syngeneic orthotopic mouse HGSOC models that replicated the human tumor microenvironment, TME. After 4-5 weeks treatment of established tumors, cediranib had anti-tumor activity with increased tumor T cell infiltrates and alterations in myeloid cells. However, continued cediranib treatment did not change overall survival or the immune microenvironment in two of the three models. Moreover, treated mice developed additional peritoneal metastases not seen in controls. Cediranib-resistant tumors had intrinsically high levels of IL-6 and JAK/STAT signaling and treatment increased endothelial STAT3 activation. Combination of cediranib with a murine anti-IL-6 antibody was superior to monotherapy, increasing mouse survival, reducing blood vessel density and pSTAT3, with increased T cell infiltrates in both models. In a third HGSOC model, that had lower inherent IL-6 JAK/STAT3 signaling in the TME but high PD1 signaling, long-term cediranib treatment significantly increased overall survival. When the mice eventually relapsed, pSTAT3 was still reduced in the tumors but there were high levels of immune cell PD1 and PDL1. Combining cediranib with an anti-PD1 antibody was superior to monotherapy in this model, increasing T cells and decreasing blood vessel densities. Bioinformatics analysis of two human HGSOC transcriptional datasets revealed distinct clusters of tumors with IL-6 and PD-1 pathway expression patterns that replicated the mouse tumors. Combination of anti-IL-6 or anti-PD1 in these patients may increase activity of VEGFR inhibitors and prolong disease-free survival.

Related Products

Cat.No. Product Name Information
S1017 Cediranib (AZD2171) Cediranib (AZD2171, NSC-732208) is a highly potent VEGFR(KDR) inhibitor with IC50 of <1 nM, also inhibits Flt1/4 with IC50 of 5 nM/≤3 nM, similar activity against c-Kit and PDGFRβ, 36-, 110-fold and >1000-fold selective more for VEGFR than PDGFR-α, CSF-1R and Flt3 in HUVEC cells. Cediranib (AZD2171) induces autophagic vacuole accumulation. Phase 3.

Related Targets

VEGFR Autophagy PDGFR c-Kit