Category

Archives

FZD7, Regulated by Non-CpG Methylation, Plays an Important Role in Immature Porcine Sertoli Cell Proliferation

The regulatory role of non-CpG methylation in mammals has been important in whole-genome bisulfite sequencing. It has also been suggested that non-CpG methylation regulates gene expression to affect the development and health of mammals. However, the dynamic regulatory mechanisms of genome-wide, non-CpG methylation during testicular development still require intensive study. In this study, we analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and the RNA-seq of precocious porcine testicular tissues across two developmental stages (1 and 75 days old) in order to explore the regulatory roles of non-CpG methylation. Our results showed that genes regulated by non-CpG methylation affect the development of testes in multiple pathways. Furthermore, several hub genes that are regulated by non-CpG methylation during testicular development-such as VEGFAPECAM1, and FZD7-were also identified. We also found that the relative expression of FZD7 was downregulated by the zebularine-induced demethylation of the first exon of FZD7. This regulatory relationship was consistent with the results of the WGBS and RNA-seq analysis. The immature porcine Sertoli cells were transfected with RNAi to mimic the expression patterns of FZD7 during testicular development. The results of the simulation test showed that cell proliferation was significantly impeded and that cell cycle arrest at the G2 phase was caused by the siRNA-induced FZD7 inhibition. We also found that the percentage of early apoptotic Sertoli cells was decreased by transfecting them with the RNAi for FZD7. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. We further demonstrated that Sertoli cells that were treated with the medium collected from apoptotic cells could stimulate proliferation. These findings will contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and of the relationship between the proliferation and apoptosis of normal somatic cells.

 

Comments:

This study analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and RNA-seq of precocious porcine testicular tissues across two developmental stages to explore the regulatory roles of non-CpG methylation in testicular development. The results indicated that genes regulated by non-CpG methylation affect the development of testes in multiple pathways, and several hub genes were identified. FZD7 was found to be one of the hub genes regulated by non-CpG methylation during testicular development. The study also demonstrated that the downregulation of FZD7 expression could impede cell proliferation and cause cell cycle arrest at the G2 phase, as well as decrease the percentage of early apoptotic Sertoli cells. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. Additionally, the study showed that Sertoli cells treated with the medium collected from apoptotic cells could stimulate proliferation. These findings contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and the relationship between the proliferation and apoptosis of normal somatic cells.

Related Products

Cat.No. Product Name Information
S7113 Zebularine (NSC 309132) Zebularine (NSC 309132, 4-Deoxyuridine) is a DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases, also inhibits cytidinedeaminase with Ki of 2 μM in a cell-free assay.

Related Targets

DNA Methyltransferase