Category

Archives

Expression patterns and therapeutic implications of histone deacetylase-1 across carcinomas: a comprehensive molecular docking and MD simulation study

Histone deacetylases (HDACs) are a group of enzymes that control the expression of genes by deacetylating lysine residues on histone and nonhistone proteins. They control the expression of several proteins linked to the development and spread of cancer. Deregulation of HDAC1 has been reported across several tumors, and targeting HDAC1 with specific inhibitors has demonstrated a promising therapeutic strategy. Mocetinostat, an HDAC1 inhibitor, is yielding promising results both in vitro and in vivo studies. However, toxicities associated with Mocetinostat limit its therapeutic efficacy, so there is an urgent need to investigate novel HDAC1 inhibitors. The present study aimed to explore novel HDAC1 inhibitors and investigate the expression profile, and the prognostic and diagnostic significance of HDAC1 across pan-cancers. HDAC1 was found overexpressed across several tumors and its high expression signifies worse OS and RFS. Also, the study identified two novel HDAC1 inhibitors using an in-silico approach with high binding affinity for HDAC1 compared to Mocetinostat and formed significantly stable complexes. In conclusion, the study signifies that targeting HDAC1 is a promising therapeutic strategy, and exploring novel therapeutic agents through basic, translational design may lead to their ultimate use in cancer prevention.

Related Products

Cat.No. Product Name Information
S1122 Mocetinostat (MGCD0103) Mocetinostat (MGCD0103, MG0103) is a potent HDAC inhibitor with most potency for HDAC1 with IC50 of 0.15 μM in a cell-free assay, 2- to 10- fold selectivity against HDAC2, 3, and 11, and no activity to HDAC4, 5, 6, 7, and 8. Mocetinostat (MGCD0103) induces apoptosis and autophagy. Phase 2.

Related Targets

Apoptosis related Autophagy HDAC