Category

Archives

Combined Therapy of AXL and HDAC Inhibition Reverses Mesenchymal Transition in Diffuse Intrinsic Pontine Glioma

Purpose: Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype.

Experimental design: We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors. Patient-derived neurospheres, xenografts, and allografts were used to determine the therapeutic potential of combined AXL/HDAC inhibition for the treatment of DIPG.

Results: We identified AXL as a therapeutic target and regulator of the mesenchymal transition in DIPG. Combined AXL and HDAC inhibition had a synergistic and selective antitumor effect on H3K27M DIPG cells. Treatment of DIPG cells with the AXL inhibitor BGB324 and the HDAC inhibitor panobinostat resulted in a decreased expression of mesenchymal and stem cell genes. Moreover, this combination treatment decreased expression of DNA damage repair genes in DIPG cells, strongly sensitizing them to radiation. Pharmacokinetic studies showed that BGB324, like panobinostat, crosses the blood-brain barrier. Consequently, treatment of patient-derived DIPG xenograft and murine DIPG allograft-bearing mice with BGB324 and panobinostat resulted in a synergistic antitumor effect and prolonged survival.

Conclusions: Combined inhibition of AXL and HDACs in DIPG cells results in a synergistic antitumor effect by reversing their mesenchymal, stem cell-like, therapy-resistant phenotype. As such, this treatment combination may serve as part of a future multimodal therapeutic strategy for DIPG.

Related Products

Cat.No. Product Name Information
S2841 Bemcentinib (R428) Bemcentinib (R428, BGB324) is an inhibitor of Axl with IC50 of 14 nM, >100-fold selective for Axl versus Abl. Selectivty for Axl is also greater than Mer and Tyro3 (50-to-100- fold more selective) and InsR, EGFR, HER2, and PDGFRβ (100- fold more selective).

Related Targets

TAM receptors (Tyro-3,Axl,and Mertk)