RAF265 (CHIR-265)

RAF265 (CHIR-265) is a potent selective inhibitor of C-Raf/B-Raf/B-Raf V600E with IC50 of 3-60 nM, and exhibits potent inhibition on VEGFR2 phosphorylation with EC50 of 30 nM in cell-free assays. RAF265 (CHIR-265) induces cell cycle arrest and apoptosis. Phase 2.

RAF265 (CHIR-265) Chemical Structure

RAF265 (CHIR-265) Chemical Structure

CAS No. 927880-90-8

Purity & Quality Control

RAF265 (CHIR-265) Related Products

Signaling Pathway

Cell Data

Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID
SK-MEL-28 Growth inhibition assay Growth inhibition of SK-MEL-28 cells, IC50=0.14μM. 21576023
MALME-3M Growth inhibition assay Growth inhibition of MALME-3M cells, IC50=0.14μM. 21576023
A375M Growth inhibition assay Growth inhibition of A375M cells, IC50=0.14μM. 21576023
A375 Function assay Inhibition of B-RAF V600E mutant in human A375 cells assessed as phosphorylation of ERK, IC50=0.04μM. 26396681
Malme-3M Function assay Inhibition of B-RAF V600E mutant in human Malme-3M cells assessed as phosphorylation of ERK, IC50=0.04μM. 26396681
WM-1799 Function assay Inhibition of B-RAF V600E mutant in human WM-1799 cells assessed as phosphorylation of ERK, IC50=0.04μM. 26396681
MALME-3M Antiproliferative assay Antiproliferative activity against human MALME-3M cells harboring B-RAF V600E mutant, IC50=0.04μM. 26396681
A375 Antiproliferative assay Antiproliferative activity against human A375 cells harboring B-RAF V600E mutant, IC50=0.04μM. 26396681
WM1799 Antiproliferative assay Antiproliferative activity against human WM1799 cells harboring B-RAF V600E mutant, IC50=0.04μM. 26396681
SK-MEL-28 Function assay Inhibition of B-RAF V600E mutant in human SK-MEL-28 cells assessed as phosphorylation of ERK, IC50=0.14μM. 26396681
SK-MEL-28 Antiproliferative assay Antiproliferative activity against human SK-MEL-28 cells harboring B-RAF V600E mutant, IC50=0.16μM. 26396681
A375M Function assay 100 mg/kg fCmin in mouse xenografted with human A375M cells at 100 mg/kg, po q2d, fCmin=0.5μM. 26396681
A375M Function assay 100 mg/kg 48 hrs Inhibition of B-RAF V600E mutant in mouse xenografted with human A375M cells assessed as reduction of phospho-MEK level in tumor at 100 mg/kg, po q24 after 48 hrs by Western blot analysis 26396681
A375M Function assay 100 mg/kg 48 hrs Inhibition of B-RAF V600E mutant in mouse xenografted with human A375M cells assessed as reduction of phospho-MEK level in tumor at 100 mg/kg, po q2d after 48 hrs by Western blot analysis 26396681
A375M Function assay 30 to 100 mg/kg 4 hrs Inhibition of B-RAF V600E mutant in mouse xenografted with human A375M cells assessed as reduction of phospho-MEK level in tumor at 30 to 100 mg/kg, po q2d measured after 4 hrs post-third dose by Western blot analysis 26396681
A375M Antitumor assay 10 to 100 mg/kg 30 days Antitumor activity against human A375M cells xenografted in mouse assessed as tumor regression at 10 to 100 mg/kg, po q2d measured up to 30 days 26396681
TC32 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells 29435139
DAOY qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells 29435139
SJ-GBM2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells 29435139
A673 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells 29435139
SK-N-MC qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells 29435139
BT-37 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells 29435139
NB-EBc1 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells 29435139
U-2 OS qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells 29435139
Saos-2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells 29435139
SK-N-SH qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells 29435139
NB1643 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells 29435139
LAN-5 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells 29435139
BT-12 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells 29435139
RD qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells 29435139
NB1643 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells 29435139
SK-N-MC qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells 29435139
LAN-5 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells 29435139
NB-EBc1 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells 29435139
BT-37 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells 29435139
TC32 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells 29435139
MG 63 (6-TG R) qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells 29435139
VERO-E6 Function assay 48 hrs Toxicity CC50 against VERO-E6 cells determined at 48 hours by high content imaging (same conditions as 2_LEY without exposure to 0.01 MOI SARS CoV-2 virus), CC50=9.19μM. ChEMBL
VERO-E6 Function assay 48 hrs Determination of IC50 values for inhibition of SARS-CoV-2 induced cytotoxicity of VERO-E6 cells after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging, IC50=14.64μM. ChEMBL
Click to View More Cell Line Experimental Data

Biological Activity

Description RAF265 (CHIR-265) is a potent selective inhibitor of C-Raf/B-Raf/B-Raf V600E with IC50 of 3-60 nM, and exhibits potent inhibition on VEGFR2 phosphorylation with EC50 of 30 nM in cell-free assays. RAF265 (CHIR-265) induces cell cycle arrest and apoptosis. Phase 2.
Targets
VEGFR2 [1]
(Cell-free assay)
B-Raf [1]
(Cell-free assay)
30 nM(EC50) 3 nM-60 nM
In vitro
In vitro RAF265 inhibits C-Raf, wild type B-Raf and mutant (V600E) B-Raf. RAF265 effectively block phosphorylation of Raf's downstream substrates MEK and ERK in cells and also kill melanoma and colorectal cancer cell lines harboring B-Raf mutations independent of PTEN mutation status. Raf kinase inhibition by RAF265 in mutant B-Raf melanoma cell lines causes cell cycle arrest and induces apoptosis, mimicking the effect of Raf RNAi in these cells. RAF265 also potently inhibits the phosphorylation of VEGFR2 and proliferation of VEGF-stimulated hMVEC. [1] In HT29 and MDAMB231 cells, RAF265 shows inhibitory activity with IC20 of 1 to 3 μM and IC50 of 5 to 10 μM, respectively. While RAF265 leads to a significant decrease in clonogenic survival in all tested cell lines, which means that RAF265 induces a dominant effect on clonogenic survival. Addition of RAF265 to RAD001 in HCT116 cells could lead to moderately decreased AKT, S6 protein, and 4EBP1 phosphorylation. [2] Raf265 markedly reduces the protein level of Bcl-2 and great inhibitory in CM- and NCI-H727 cells, while having no effect on the TRAIL susceptibility of BON1 and GOT1 cells. [3] Protein kinase D3 (PRKD3) that when knocked down could enhance cell killing by RAF265 in A2058 melanoma cells, which prevent reactivation of MAPK signaling, induce PARP cleavage, increase caspase activity, interrupt cell-cycle progression, and inhibit colony formation. [4]
Kinase Assay Assay Protocol
Raf and Mek are combined at 2 × final concentrations in assay buffer (50 mM Tris, pH 7.5, 15 mM MgCl2. 0.1 mM EDTA and 1 mM DTT) and dispensed 15 μL per well in polypropylene assay plates. Background levels are determined in wells containing Mek and DMSO without Raf. To the Raf/Mek containing wells is added 3 μL of 10 × of RAF265 diluted in 100% DMSO. The raf kinase activity reaction is started by the addition of 12 μL per well of 2.5 × 33P-ATP diluted in assay buffer. After 45-60 minutes, the reactions are stopped with the addition of 70 μL of stop reagent (30 mM EDTA). Filtration plates are pre-wetted for 5 min with 70% ethanol, and then rinsed by filtration with wash buffer. Samples (90 μL) from the reaction wells are then transferred to the filtration plates. The filtration plates are washed 6 × with wash buffer using Millipore filtration apparatus. The plates are dried and 100 μL per well of scintillation fluid is added. The CPM is then determined using a Wallac Microbeta 1450 reader.
Cell Research Cell lines Human A549 and H460 lung, HT29 and HCT 116 colon, and MDAMB231 breast cancer cell lines
Concentrations 0.1 - 10 μM
Incubation Time 48 hours
Method The MTT assay and Bliss additivism model are used to assess the effect of RAF265 on cell viability. In each well of a 96-well plate, 1 × 104 cells are grown in 200 μL of medium. After 24 hours, RAF265 is added to achieve a final concentration of 0.1 to 10 μM. After 48 hours of treatment, 20 μL of 5 mg/mL MTT solution in PBS is added to each well. After 4 hours, supernatant is removed and formazan crystals are discarded in 200 μL of DMSO. Absorbance is then measured at 595 nm using an absorbance plate reader. Data are expressed as the percentage of viable cells.
In Vivo
In vivo RAF265 shows 71% to 72% TVI% (tumor volume inhibition percentage) in HCT116 xenografts at 12 mg/kg. While the combination of RAF265 and RAD001 shows enhanced antitumor activity with increased T10 (time to achieve a relative tumor volume of 10 times the initial tumor volume) and tumor growth delay. The combination of RAD001 and RAF265 also significantly enhances the activation of caspase-3 in HCT116 and MDAMB231 but not in A549 xenografts. [2] RAF265 inhibits FDG (2-deoxy-2-[18F]fluoro-d-glucose) accumulation and decreases the tumor volumes in A375M xenografts by orally dosed of 100 mg/kg. [5]
Animal Research Animal Models A549, H460, HCT116, or MDAMB231 cells are injected s.c. into the flank region of 6-wk-old female athymic mice.
Dosages 12 mg/kg
Administration Orally administered daily
NCT Number Recruitment Conditions Sponsor/Collaborators Start Date Phases
NCT01352273 Completed
Advanced Solid Tumors
Array Biopharma now a wholly owned subsidiary of Pfizer|Array BioPharma
June 2011 Phase 1

Chemical Information & Solubility

Molecular Weight 518.41 Formula

C24H16F6N6O

CAS No. 927880-90-8 SDF Download RAF265 (CHIR-265) SDF
Smiles CN1C2=C(C=C(C=C2)OC3=CC(=NC=C3)C4=NC=C(N4)C(F)(F)F)N=C1NC5=CC=C(C=C5)C(F)(F)F
Storage (From the date of receipt)

In vitro
Batch:

DMSO : 100 mg/mL ( (192.89 mM) Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Ethanol : 33 mg/mL

Water : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy RAF265 (CHIR-265) | RAF265 (CHIR-265) supplier | purchase RAF265 (CHIR-265) | RAF265 (CHIR-265) cost | RAF265 (CHIR-265) manufacturer | order RAF265 (CHIR-265) | RAF265 (CHIR-265) distributor