Category

Archives

Upregulation of FOXO1 contributes to lipopolysaccharide-induced pulmonary endothelial injury by induction of autophagy

Background: Autophagy is activated during the pathogenesis of endothelial dysfunction and sepsis-associated acute lung injury (ALI). This study aimed to investigate whether autophagy affected endothelial barrier dysfunction and lung injury in a murine model of lipopolysaccharide (LPS)-induced ALI, and then further clarify whether forkhead box O1 (FOXO1), an autophagy-related transcriptional factor, contributed to autophagy activation and ALI induced by LPS.

Methods: Male C57BL/6 mice were treated with LPS (30 mg/kg), and then were allocated to a control group and an LPS group with or without FOXO1 inhibitor (AS1842856) treatment, respectively. Primary cultured mouse lung vascular endothelial cells (MLVECs) were treated with LPS, autophagy inhibitor 3-methyladenine (3-MA), AS1842856, and small interfering RNA (siRNA) targeting autophagy-related gene 5 (ATG5) or FOXO1. Endothelial autophagic flux was assessed by transfection of MLVECs with red fluorescent protein (RFP)-green fluorescent protein (GFP) tandem fluorescent-tagged LC3 (RFP-GFP-LC3) adenovirus. Endothelial permeability was analyzed by the diffusion of fluorescein isothiocyanate-carboxymethyl (FITC)-dextran through the endothelial monolayer. Evans blue albumin tracer was used to measure the pulmonary transvascular permeability, and hematoxylin and eosin (H&E) staining was used to observe pathological changes in the lung tissues. Immunofluorescence staining was also used to detect the expression of zonula occludens-1 (ZO-1) and FOXO1.

Results: This study found autophagy induction in lung tissues of endotoxemic mice and LPS-treated MLVECs, as evidenced by elevated expression of light chain 3 II (LC3-II) and Unc-51-like kinase (ULK1) and autophagic flux. LPS treatment decreased vascular endothelial (VE)-cadherin and ZO-1 expression and increased endothelial permeability in MLVECs, which were significantly alleviated by autophagy inhibitor 3-MA and ATG5 siRNA. It was found that both phosphorylated FOXO1 and FOXO1 were upregulated in the lung tissues of endotoxemic mice and LPS-treated MLVECs. Both FOXO1 inhibitor AS1842856 and FOXO1 siRNA suppressed LPS-induced autophagy and endothelial cell injury in MLVECs. Moreover, FOXO1 inhibition profoundly alleviated autophagy, lung endothelial hyperpermeability, and ALI in endotoxemic mice.

Conclusions: This work demonstrated that FOXO1 upregulation is an important contributor to LPS-induced autophagy in pulmonary VE cells. The detrimental effects of FOXO1 in endotoxemia-associated endothelial dysfunction and ALI are partly due to its potent pro-autophagic property. Inhibition of FOXO1 may be a potential therapeutic option for the treatment of ALI.

Related Products

Cat.No. Product Name Information
S8222 AS1842856 AS1842856 is a cell-permeable inhibitor that blocks the transcription activity of Foxo1 with IC50 of 33 nM. It could directly bind to the active Foxo1, but not the Ser256-phosphorylated form. AS1842856 suppresses autophagy.

Related Targets

Autophagy FOX