Ranolazine

Synonyms: CVT 303, RS 43285-003

Ranolazine (CVT 303, RS 43285-003) is a calcium uptake inhibitor via the sodium/calcium channel, used to treat chronic angina.

Ranolazine  Chemical Structure

Ranolazine Chemical Structure

CAS No. 95635-55-5

Purity & Quality Control

Ranolazine Related Products

Biological Activity

Description Ranolazine (CVT 303, RS 43285-003) is a calcium uptake inhibitor via the sodium/calcium channel, used to treat chronic angina.
Targets
Calcium channel [1]
In vitro
In vitro

Ranolazine is found to bind more tightly to the inactivated state than the resting state of the sodium channel underlying I(NaL), with apparent dissociation constants K(dr)=7.47 mM and K(di)=1.71 mM, respectively. Ranolazine at 5 mM and 10 mM reversibly shortens the duration of TCs and abolishes the after contraction.[1] Ranolazine inhibits the late component of INa and attenuates prolongation of action potential duration when late INa is increased, both in the absence and presence of IK-blocking drugs. Ranolazine (10 mM) reduces by 89% the 13.6-fold increase in variability of APD caused by 10 nM ATX-II. [2]

In Vivo
In vivo

Ranolazine significantly and reversibly shortens the action potential duration (APD) of myocytes stimulated at either 0.5 or 0.25 Hz in a concentration-dependent manner in left ventricular myocytes of dogs. [1] Ranolazine (10 mM) significantly increases glucose oxidation 1.5-fold to 3-fold under conditions in which the contribution of glucose to overall ATP production is low (low Ca, high FA, with insulin), high (high Ca, low Fa, with pacing), or intermediate in working heart of rats. Ranolazine (10 mM) similarly increases glucose oxidation in normoxic Langendorff hearts (high Ca, low FA; 15 mL/min) of rats. Ranolazine significantly improves functional outcome in reperfused ischemic working hearts, which is associated with significant increases in glucose oxidation. [3]

NCT Number Recruitment Conditions Sponsor/Collaborators Start Date Phases
NCT03486561 Unknown status
Chronic Stable Angina
OBS Pakistan
April 1 2018 Phase 4
NCT03044964 Unknown status
Angina
Amit Malhotra MD|Gilead Sciences|Stern Cardiovascular Foundation Inc.
January 10 2017 Phase 4
NCT02252406 Completed
Stable Angina|Metabolic Syndrome
University of Florida
September 2015 Phase 4
NCT02360397 Completed
Ventricular Premature Complexes|Myocardial Ischemia
Kent Hospital Rhode Island|Gilead Sciences
December 2014 Phase 2
NCT02156336 Terminated
Diabetic Peripheral Neuropathic Pain
Horizons International Peripheral Group|Gilead Sciences
May 2014 Phase 4

Chemical Information & Solubility

Molecular Weight 427.54 Formula

C24H33N3O4

CAS No. 95635-55-5 SDF Download Ranolazine SDF
Smiles CC1=C(C(=CC=C1)C)NC(=O)CN2CCN(CC2)CC(COC3=CC=CC=C3OC)O
Storage (From the date of receipt)

In vitro
Batch:

DMSO : 86 mg/mL ( (201.15 mM) Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Ethanol : 20 mg/mL

Water : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy Ranolazine | Ranolazine supplier | purchase Ranolazine | Ranolazine cost | Ranolazine manufacturer | order Ranolazine | Ranolazine distributor